
Ferromagnetic nanostructures in the generalized Valenta model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 095217

(http://iopscience.iop.org/0953-8984/20/9/095217)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 10:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/9
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 095217 (12pp) doi:10.1088/0953-8984/20/9/095217

Ferromagnetic nanostructures in the
generalized Valenta model
B Busiakiewicz, I Zasada and L Wojtczak

Solid State Physics Department, University of Lodz, ulica Pomorska 149/153,
90236 Lodz, Poland

Received 13 October 2007, in final form 18 December 2007
Published 14 February 2008
Online at stacks.iop.org/JPhysCM/20/095217

Abstract
Ferromagnetic nanostructures are an area of great interest for modern physics. A comparison of
experimental data and theoretical results shows that the use of the standard molecular field
approximation is insufficient for the description of the nanostructure properties. Therefore in
the present paper we use the reaction field approach in order to test the Valenta model
generalized in this way. The agreement between experiment and theory is then excellent.

1. Introduction

Recently, nanoparticles structures have been intensively
discussed in connection with physical phenomena considered
at the nanoscale level [1, 2]. In particular, the results obtained
for the spin wave resonance in nanoparticles seem to be quite
sensitive to the particle geometry and to the surface as well as
edge anisotropy. Similarly, we can expect the magnetization to
depend on the anisotropy and the particle size.

A comparison of experimental results and theory gives
evidence that the standard mean field approach (MFA)
is insufficient to explain the properties of ferromagnetic
nanostructured samples [3], which are currently of great
interest to investigators.

However, it is widely known that the Valenta model [4]
used for magnetic thin films leads to their proper descrip-
tion [5] despite the fact that the results of the model are usually
considered to be equivalent to the MFA treatment.

Thus, we can see that the experimental data exclude the
use of the standard Valenta model for nanostructures, but
agreement between the experimental and theoretical results
can be obtained when the Valenta model is improved by
introducing a modified effective field, e.g. the reaction field
approach (RFA) which allows us to apply the model to
a description of nanostructured two-dimensional magnetic
layers.

Of course, another model can be applied; e.g. the
theoretical model based on the Green function method within
the random phase approximation [6] has been used to
compare experimental data with theoretical expectations [3].
However, the modified version of the Valenta model seems
to be methodologically more suitable, taking into account the
structural similarity of films and nanoparticles.

Therefore in the present paper we calculate the Curie
temperature and magnetization behaviour in terms of the
Valenta model [4] generalized by the RFA [7] for different
multilayer systems [3]. We then discuss the model in a
general context, treating the relationship to the experimental
situation [3] as an indication of the improved modelling
approach.

Moreover, the example discussed here is an illustration
of the thermodynamic behaviour of the system, which can
be considered in connection with its general behaviour. The
properties of inhomogeneous systems are described in the
same way in the Valenta model and in the Green function
technique model. The improvement can be considered at
different levels of accuracy but is still at the same level as
the thermodynamic interpretation. In this context our next
goal is to show a comparison between these two theoretical
approaches and the convergence of their results. In the light
of the above considerations it seems to us that the problem is
of a general nature for any thermodynamically inhomogeneous
system, not only of magnons but of phonons as well as for
objects described by an electronic structure.

2. Experimental data for fcc(100) multilayer systems

Ferromagnetic multilayers separated by a nonmagnetic spacer
have shown rich magnetic features, which makes them
interesting systems for investigation. In particular, the
behaviour of the Curie temperature, one of the most important
characteristics of ferromagnets, is worthy of study. Our
theoretical considerations and calculations focus particularly
on the experiment performed by Scherz and co-workers [3].
They investigated trilayers with two different ferromagnetic
films, e.g. Ni film and Co film, having different ordering
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temperatures and separated by Cu spacer film. Such a system
is a very good basis for illustrating how the Curie temperature
is influenced by the thickness of magnetic layers as well as by
the thickness of the spacer.

The experimental results show that the Curie temperature
of nickel, TC,Ni, is lower for Ni embedded in Cu/Ni/Cu(100)
system than in the case when Co layers are deposited
on Cu, creating a trilayer Co/Cu/Ni/Cu(100) system. In
references [3, 5] the authors suggest that the shift of the
Curie temperature of nickel (�TC,Ni) due to Co deposition is
caused by the interlayer exchange coupling through the Cu
spacer and it depends on the spacer thickness. The expression
for the RKKY coupling between two ferromagnetic layers
separated by a nonmagnetic spacer was derived in [8]. The
coupling of Ni and Co films was found to be ferromagnetic or
antiferromagnetic depending on the spacer thickness. The shift
of the Ni ordering temperature as a function of the Cu spacer
thickness exhibits oscillations due to the oscillatory character
of the coupling. In paper [3] the authors, in order to clarify
the notation, labelled the Curie temperature of a Ni film as
TC,Ni and the shifted value due to Co deposition as T ∗

C,Ni, to
indicate that in a strict thermodynamic sense the latter may
not refer to a real phase transition. Nevertheless, it makes
sense to call T ∗

C,Ni a quasi-critical temperature, as it is usually
treated in the literature [3], although above this temperature
the Ni magnetization does not vanish but is radically decreased
(about 100 times) and Ni films can be considered to be in
a paramagnetic state. In the present paper we keep this
convention as it is practical for making comparisons between
the results for different multilayer systems.

Other interesting data have been obtained for Cu/Ni/Cu
(100) and Ni/Cu(100) systems [9]. It is then clearly visible
that in the case of an uncapped Ni film its Curie temperature is
much higher than in the case of Ni capped by Cu.

3. Reaction field approach to the Valenta model

A number of effective field theories which are an improved
version of the MFA can be easily found in the literature [10].
The reaction field approximation (correlated effective field
approximation) introduced by Onsager [7] and developed by
Gusmao and Scherer [11] seems to be one of the most
convenient methods for the description of magnetic properties.
It consists in the extension of the molecular field appearing
in the usual MFA treatment by adding the reaction field
of the system (RFA) with respect to the response of the
neighbourhood of a given spin to the mutual interaction.

3.1. The background of the Valenta model and its validity

The theory of magnetic thin films known in the literature as
the Valenta model [4] consists in two assumptions: (i) about
the sample geometry whose discretization reflects the crystal-
lographic lattice and (ii) about the thermodynamics modified
for inhomogeneous media using a physical interpretation in
terms of Néel sublattices [12]. It is worthwhile noticing that
the excellent idea of Néel can be also considered in the con-
text of the Hill approach [13], which has recently been used to
describe the properties of nanoparticles [14].

Originally introduced for magnetic films, the Valenta
model is now generalized for different systems, taking their
inhomogeneity into account. It is extended for diluted
alloys [15], multilayers [16] and wires as well as rectangle
boxes [17] which can represent the nanoparticle structure. Of
course, it is applicable not only for magnetic systems but also
for different kinds of objects, e.g. phonons in connection with
melting studies [18], and for all cases of a general character
in which thermodynamically inhomogeneous samples are
involved.

It is important to mention that the background of the
Valenta model consists in the division of a sample into
homogeneous subsystems. From the quantum mechanics point
of view this division implies [4] that the total wavefunction of
the electrons of a system practically differs very little from the
wavefunction of the state in which the components of magnetic
moments in the homogeneous subsystems have well defined
values. In these conditions, however, the model corresponds
to the situation when the Hamiltonians of the subsystems do
not commute with the Hamiltonian of the system. Although
the commutative rules are only approached, they are satisfied
in a simple case when the interactions between the sublattices
are determined by means of the effective fields. Thus, at high
temperature, the quantum mechanical construction influences
the thermodynamic interpretation. The Hamiltonian of each
Néel sublattice corresponds to the integral of motion for each
subsystem. This means that the total wavefunction of the
state is the product of the wavefunctions with respect to an
individual sublattice. From the thermodynamic point of view
this fact is equivalent to the factorization of the partition
functions. The total partition function is factorized with
respect to the partition functions of individual subsystems.
The statistical operator of a system is then a product of the
statistical operators of subsystems due to the additive character
of the effective Hamiltonians. As a consequence, the entropy
is a sum of terms describing homogeneous contributions of
subsystem entropies that are independent of each other in the
calculations.

At low temperatures the constructions of a Heisenberg
type quantum mechanical theory leads to a solution which
can be related to spin wave propagations or, in the magnon
representation, to quasi free particles when they are embedded
in a heat bath of harmonic oscillators. This level of
approximation corresponds to the case when the transverse
correlations between spins are neglected, i.e. the Hamiltonian
is reduced to an Ising type Hamiltonian whose longitudinal
correlations reduce to the MFA results.

Thus, taking into account that the basic nature of
the Valenta model is connected with the Heisenberg type
interactions, it seems to us to be natural to introduce
the reaction field approach instead of the molecular field
approximation, which is usually interpreted as the result of
the Valenta model while in fact it is only one of various
possibilities. Another possibility is to use the reaction field
approach, as in the present paper.
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3.2. The basic concept of the reaction field approach

Taking into account the original assumptions which are based
on the physical background, we can modify the Valenta
model by introducing the reaction field instead of the standard
molecular field.

The procedure for the reaction field approach consists
in adding to the molecular field a correlation dependent
term determined by means of the fluctuation–dissipation
theorem. The part of the effective field arising from the
reaction field does not favour one orientation over another
while the molecular field is directed along the spontaneous
magnetization axis. The following considerations are based on
the pioneering work by Wojtczak and Mrygoń [19], although
this kind of approach has also been used in the case of
inhomogeneous ferromagnets [20].

A film can be treated as a sample cut in some
crystallographic orientation with respect to the surface of the
crystal with a given crystallographic structure characterized
by the spectrum of the nearest neighbouring atoms. In this
case the atoms situated at the surfaces have a neighbourhood
that is different from that of the atoms inside a sample. This
geometric situation then corresponds to the different conditions
in which the atoms at the surface and the atoms inside a sample
are embedded. In a natural way, such a film can be divided
into monoatomic layers parallel to the surface plane and each
layer can be treated as a two-dimensional thermodynamically
homogeneous subsystem [21].

The thermodynamic approach is, in general, based on the
free energy functional construction:

F = U − T S (1)

which can be obtained by means of the internal energy U and
the entropy S calculations.

To determine the internal energy we introduce the
Hamiltonian of the system in the following form:

H = − 1
2

∑

ν jν′ j ′,α
J α
ν jν′ j ′ Sα

ν j Sα
ν′ j ′ − γ

∑

ν jα

H α
ν j S

α
ν j (2)

where the exchange integral is given by:

J α
ν jν′ j ′ = Jν jν′ j ′ + Kν jδ

αz
ν jν′ j ′ (3)

with Kν j standing for the anisotropy constant including
the volume and the surface anisotropy term and with
Jν jν′ j ′ representing the exchange integral responsible for the
interaction between a given spin and its nearest neighbours
in the same magnetic layer (ν = ν ′) or in the neighbouring
layers (ν ′ = ν ± 1). The index ν numbers the monoatomic
layers of the thin films (ν = 1, . . . , n) while vector j defines
the position of the magnetic atom within a given layer ν, z is
the direction of spontaneous magnetization, α means direction
perpendicular (α = ⊥ = x, y) or parallel (α = ‖= z) to the
magnetization, γ stands for gμB factor and H α

ν j is an external
field.

Hamiltonian (2) can be approximated by an effective
Hamiltonian:

Heff = −γ
∑

ν j,α

H eff,α
ν j Sα

ν j (4)

where H eff,α
ν j stands for the effective mean field which is given

by
γ H MFA,α

ν j =
∑

ν′ j ′
J α
ν jν′ j ′

〈
Sα

ν′ j ′
〉 + γ H α

ν j (5)

in the standard molecular field approximation (MFA) while in
the reaction field approximation (RFA) it takes the following
form:

γ H RFA,α
ν j =

∑

ν′ j ′
J α
ν jν′ j ′

〈
Sα

ν′ j ′
〉 − λ

〈
Sα

ν j

〉 + γ H α
ν j . (6)

We introduce here the correlation parameter λ characteristic of
the RFA which is in fact independent of (ν, j) due to symmetry
conditions [11] and is assumed to be homogeneous in the
sample.

We can now define the internal energy U as the mean value
of the effective Hamiltonian (4), namely

U = 〈Heff
〉 = −

∑

ν jν′ j ′,α
J α
ν jν′ j ′

〈
Sα

ν j

〉 〈
Sα

ν′ j ′
〉

+
∑

ν j,α

(
λ

〈
Sα

ν j

〉 〈
Sα

ν j

〉 − γ Hα
ν j

〈
Sα

ν j

〉)
. (7)

First of all, we calculate the quantity λ considering
equation (6). It may be separated into its unperturbed H α

ν j,0 and
perturbed δH α

ν j parts. The latter is connected with the response
of the system for the existing molecular field and the external
field H α

ν j . Thus,

γ Hα
ν j0 =

∑

ν′ j ′∈ν j

J α
ν jν′ j ′

〈
Sα

ν′ j ′
〉
0
− λ

〈
Sα

ν j

〉
0

(8)

γ δH α
ν j = γ H α

ν j +
∑

ν′ j ′∈ν j

J α
ν jν′ j ′δ

〈
Sα

ν′ j ′
〉 − λδ

〈
Sα

ν j

〉
. (9)

We now introduce the k-space which is usually considered in
the case of the thin film geometry [22]. We assume the usual
notation, k for 3D systems and h for 2D subsystems so that
k = (τ, h) where τ labels the subsystems. The transformation
T α

ν jτh changes the representation of the Hamiltonian (7) from
the configurational space (ν j) in which the pair interactions
are taken into account to the wavevector (τ, h)-space in which
this Hamiltonian is diagonal. Then, the fluctuating term of the
effective field δH α

ν j (9) can be transformed into (τ, h)-space
by multiplying relation (9) by T α

ν jτh and summing over (ν j),
namely

δ
〈
Sα

τh

〉 =
∑

ν j

T α
ν jτhδ

〈
Sα

ν j

〉
(10)

H α
τh =

∑

ν j

T α
ν jτh H α

ν j (11)

while the equation
∑

ν′ j ′∈ν j

J α
ν jν′ j ′ T α

ν′ j ′τh = J α (τh) T α
ν jτh (12)

leads to the solution for the transformation coefficient T α
ν jτh .

Thus,

γ δH α (τh) = γ H α (τh) + (J α (τh) − λ) δ
〈
Sα

τh

〉
. (13)

In the (τ, h)-space introduced above we denote h as a
wavevector of spin waves propagating in the planes; h is then

3
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perpendicular to j . The mode τ corresponds to the third
component of the wavevector oriented perpendicularly to ν.
The details of T α

ν jτh transformation are discussed in [22].
Now, we present the detailed calculations leading to the

expressions for λ and other quantities which are necessary to
describe our system.

First of all, following the procedure reported in [11],
we obtain the expressions for the susceptibilities, parallel or
perpendicular with respect to the spontaneous magnetization
oriented along the z-axis. In the space (τ, h) they are of the
forms:

χ‖ (τh) = χ0‖ 1

1 − χ0‖
γ 2

(
J ‖ (τh) − λ

) (14)

and

χ0⊥ =
γ 2

〈
Sz

ν j

〉

0

γ H z
ν j0

(15)

which can be transformed by means of (8) and (10) together
with relation (12) to the form:

χ0⊥

γ 2
= 1

(J z(1, 0) − λ)
. (16)

The effective susceptibility χ0‖ of the system consists of the
non-interacting localized spins in the presence of an external
field H α

ν j and it satisfies the summation rule:

χ0‖ = 1

nN2

∑

τh

χ‖ (τh) (17)

where nN 2 denotes the number of spins in the system
consisting of n layers while N stands for the number of spins
in the linear dimension of the plane.

We assume that our system is isotropic in the sense that
spins which are embedded in molecular and external fields
create as response to these fields their own isotropic field which
does not favour one orientation over another. This yields the
equality

χ0⊥ = χ0‖ (18)

which can be considered as the equation with respect to λ and
which allows us to derive it using the summation rule (17).

By substituting (14) into (17) and using (16) we have

1 = J z(1, 0) − λ

J (1, 0)

1

nN 2

∑

τh

1
J z(1,0)

J (1,0)
− J (τ,h)

J (1,0)

(19)

where J z(1, 0) = J (1, 0) + K and J (τ, h) = J ⊥(τ, h) and K
is the anisotropy of each layer.

On the basis of the above equation we can introduce the
quantities defined in the following way:

s = J z(1, 0)

J (1, 0)
(20)

and

G(s) = J (1, 0)

nN 2

∑

τh

1

J (1, 0) + K − J (τ, h)
. (21)

The last quantity is known as ‘lattice Green function’ and it
depends on the number of layers forming the thin film. We can
see from (19) that the parameter λ can be written in the form:

λ = J (1, 0)

(
s − 1

G(s)

)
. (22)

Now, we have to calculate J (τ, h) which is dependent on the
crystallographic structure of the system. We use the relation:

J (τ, h) = 1

N

∑

ν j

∑

ν′ j ′
Tντ Tν′τ eih( j− j ′) Jν jν′ j ′ . (23)

For the coefficients Tντ we have the well-known equations [22]

Tν+1,τ + Tν−1,τ = (2 cos ϑτ ) Tντ for ν = 2, 3, . . . , n − 1
(24)

together with the orthonormality condition
∑

ν

Tντ Tντ ′ = δττ ′ (25)

and the boundary conditions

(κS − 2 cos ϑτ ) T1τ + T2τ = 0,

(κS − 2 cos ϑτ ) Tnτ + Tn−1,τ = 0
(26)

where ϑτ is connected with the perpendicular wave amplitudes
Tντ and can be interpreted as the third component of the
propagation wavevector. In the case of thin films, parameter
ϑτ runs over a discrete spectrum of values which can be
determined by the difference equations (24)–(26) [23, 24]
and which depends on constant κS, being the perpendicular
anisotropy, which describes only the properties of the boundary
surfaces.

Taking into account the relations (24) and (25), we can
rewrite equation (23) in the form

J (τ, h) = 1

N

∑

j ′
ν∈ jν

Jν jν j ′eih( jν− j ′
ν)

+ 1

N
2 cos ατ

∑

j ′
μ∈ jν

Jν jμj ′eih( jν− j ′
μ) (27)

where μ = ν ± 1.
Next, we can define the following coefficients which

determine the structure of the considered system:

f0 =
∑

j ′
ν∈ jν

eih( jν− j ′
ν) (28)

where the sum runs over spins j ′ belonging to the same layer
ν and

f|1| =
∑

j ′
μ∈ jν

eih( jν− j ′
μ) (29)

where the sum runs over spins j ′ belonging to the neighbouring
layers μ = ν ± 1.

In this way the ‘lattice Green function’ given by (21)
is determined and we can write the final expression for the
internal energy U as follows:

U = 〈Heff
〉 = −z0

∑

ν

Jννmνmν − z1

∑

ν′∈ν

Jνν′

2
mνmν±1

−
∑

ν

(Kν − λ) mνmν − γ
∑

ν

H z
ν mν (30)
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Figure 1. The trilayer system Co/Cu/Ni/Cu(100) with the exchange
couplings and anisotropies used in the theoretical model considered
here.

for internal layers ν = 2, 3, . . . , n − 1, with boundary
conditions for ν = 1, and for ν = n, given by

U1 = −z0

∑

ν

Jννmνmν − z1

∑

ν′∈ν

Jνν′

2
mνmν+1

−
∑

ν

(Kν − λ) mνmν − γ
∑

ν

H z
ν mν (31)

Un = −z0

∑

ν

Jννmνmν − z1

∑

ν′∈ν

Jνν′

2
mνmν−1

−
∑

ν

(Kν − λ) mνmν − γ
∑

ν

H z
ν mν (32)

where
mν ≡ 〈

Sz
ν

〉
(33)

Kν ≡ K while z0, z1 are the numbers of nearest neighbours
of a given atom in the same monoatomic layer and in the
neighbouring layers, respectively.

The entropy is given in the standard form:

S = −N2
n∑

ν=1

σν (34)

where

σν = kB
[(

1
2 + mν

)
ln

(
1
2 + mν

) + (
1
2 − mν

)
ln

(
1
2 − mν

)]

(35)
is the entropy per single lattice site.

3.3. Application of the Valenta model modified by RFA to
multilayer systems

The present paper is especially focused on the trilayer system
which consists of Ni film placed on fcc-Cu(100) substrate and
covered with Co film separated by a nonmagnetic Cu spacer
(figure 1). We study the influence of Co film as well as Cu
spacer thickness on the Curie temperature for Ni film in the
system in question.

Figure 2. The bilayer system Cu/Ni/Cu(100) with the exchange
couplings and anisotropies used in the theoretical model considered
here.

Figure 3. The single Ni/Cu(100) system with the exchange
couplings and anisotropies.

Taking into account the theoretical model introduced
above, we can divide our system with thickness d = dNi +
dCo into several parts with respect to different exchange
couplings Jν jν′ j ′ namely, for interior Ni and Co layers we
have JNi and JCo while for nickel layers which are directly
connected with copper we put an interface exchange coupling
J interface

Ni . The Co/Cu interface is not differentiated because
it is approximately compensated by the enhancement of the
magnetic moment in the topmost layer facing the vacuum [25]
and we take the same values of the exchange integral for all
monoatomic layers forming the Co film. The trilayer system
shown in figure 1 can be modified for simpler systems like a Ni
layer embedded in the fcc-Cu host (figure 2), a Ni overlayer on
the fcc-Cu(100) substrate (figure 3) or a freestanding Ni layer
(figure 4).

In the Ni/Cu(100) system we do not distinguish the values
for the exchange integral at the surface from those inside the Ni
film, with the exception of the interface layer. This assumption
is based on the theoretical calculations of magnetic moments in
the Ni/Cu system performed by means of the Korringa–Kohn–
Rostoker Green function method [26]. It has been shown [26]
that the enhancement of the surface magnetic moment on Ni
film compared to the value for the interior Ni atoms is rather

5
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Figure 4. The freestanding Ni layer with the exchange couplings and
anisotropies.

small (6%), while the reduction of the interface magnetic
moment of Ni is much more pronounced in comparison to its
bulk value (38%). That is why we distinguish only the interface
exchange integral J interface

Ni , treating the surface interactions as
bulk-like coupling.

The interaction between two different magnetic films Ni
and Co takes place via the interlayer exchange coupling (IEC),
which depends on the thickness of the nonmagnetic spacer, and
for this coupling we use Jinter (IEC).

Apart from the Jν jν′ j ′ a crucial role is played by the
anisotropy Kν . In each magnetic layer we distinguish two
kinds of anisotropies—in-plane KNi and KCo—while in the
interface Ni/Cu layer we have K interface

Ni . In order to take
into account the boundary conditions connected with the lack
of nearest neighbours on the surface we also consider a
perpendicular anisotropy κS introduced by equations (24)–
(26).

In order to perform the calculations for each of the above
mentioned systems and to compare the Curie temperature of
Ni layers we have to determine the equation (27) for the case
of the fcc(100) thin film system. It is easy to see that it can be
written in the form

J (τ, h) = J1 f0 + J2 2 cosϑτ f|1| (36)

with coefficients expressed as follows:

f0 = 2 cos
(

hx
a

2

)
· 2 cos

(
hy

a

2

)
(37)

f|1| = 2
(

cos
(

hx
a

2

)
+ cos

(
hy

a

2

))
(38)

and determining the structure of the considered system.
Transforming the coordinates to spherical system:

hx = h cos ϕ, hy = h sin ϕ (39)

we get J (1, 0) appearing in equations (18)–(21) equal to:

J (1, 0) = z0 J1 + z1 J22 cos ϑτ (40)

where z0 = 4 and z1 = 4 are the numbers of nearest
neighbours of a given atom in the same monoatomic layer and
in the neighbouring layers, respectively.

We have determined all quantities to perform the calcu-
lations giving us the temperature dependent magnetization of
each layer forming our system. For this purpose we have to
find the equilibrium values of mν by minimizing the free en-
ergy of the system (1) with respect to mν :

∂ F

∂mν

= 0, ν = 1, 2, . . . , n (41)

where n represents the number of layers in the whole system.
Thus, the theoretical results for the Curie temperature are

obtained in the present paper where the method of calculation
corresponds to the procedure of the Valenta model [4] applied
now to the molecular field modified by the reaction field
term. The procedure consists in the minimization of the
thermodynamic free energy taken for the internal energy (30)
with respect to the magnetization profiles. Close to the
Curie temperature the problem is equivalent to the set of
linear equations (41) whose solution leads to the Curie
temperature and the temperature dependent magnetization of
each monoatomic layer.

The result obtained in this satisfies the size effect property,
i.e. the dependence of the Curie temperature on the film
thickness.

4. Numerical results and discussion

For all systems analysed here we use the following values of
exchange integrals and anisotropy parameters: JNi = 1.7 ×
10−21 J, J interface

Ni = 4.97 × 10−22 J, JCo = 3 × 10−21 J, Jinter =
4.97 × 10−23 J, KNi = 0.001JNi, K interface

Ni = 0.001J interface
Ni ,

KCo = 0.001JCo, κS = −1 for the systems with Co film and
κS = −0.1 for the systems without Co film. The values for the
exchange integrals are slightly changed from those proposed
in [3] by Scherz et al, in connection with the fitting procedure,
while the values for other parameters come directly from the
procedure of best fitting to the experimental data.

It is worthwhile noticing that the real anisotropy results
from various physical sources. One of them is the spin–
orbit coupling whose influence on the anisotropic behaviour
of the magnetic system can be described by the effective
term in the Hamiltonian (2). The evaluation of the effective
constants is then dependent on the particular sample, i.e. the
anisotropy constant can be treated as phenomenological and
its value should be related to the experiments by the best
fitting procedure. It is also well known [26] that the
values of the exchange integrals depend on the layer-resolved
magnetic moments which are by themselves dependent on
the film thickness. However, for the purpose of the
present considerations we keep them constant for the reasons
mentioned in section 3.3 and, on the other hand, for clear
comparison with the results presented in paper [3]. The
weak point is connected with the value of J interface

Ni which
is much smaller than the other values of the exchange
integrals in the system and can be considered as an unrealistic
modification. However, some experimental measurements
reported in [27–29] show that the magnetic moments are
reduced by more than a factor of 2 in comparison to the Ni bulk.
Such a large reduction in the total magnetic moment cannot
be due to the existence of some magnetic dead layers since a
clear ferromagnetic response has been found down to 1.6 ML
Ni on Cu(001) [27] but it can be attributed to the interlayer
mixing on the interface going in the real systems deeper than
one monoatomic layer.
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Table 1. Calculated critical temperatures of Ni films in freestanding (fs) Ni layer, single Ni/Cu film, bilayer Cu/Ni/Cu system and trilayer
3 ML Co/Cu/Ni/Cu system. The last column represents the shift of the Ni temperature caused by the exchange coupling in the presence of Co
film.

TC,Ni (K)

Cu/Ni/Cu(100) Co/Cu/Ni/Cu(100)

Ni (ML) fs–Ni Ni/Cu(100) RFA MFA Exp [3] RFA MFA Exp [3] �T C,Ni (K)

1 91 27 14 73 45 79 31
2 103 71 31 109 30 101 113 100 70
3 198 173 131 261 147 199 263 214 68
4 287 271 246 375 237 319 376 314 73
5 366 339 334 423 392 423 58
6 432 422 407 447 445 447 38

Figure 5. The interlayer exchange coupling (a) and the Curie
temperature (b) as a function of the Cu spacer thickness for the
3 MLCo/Cu/3 MLNi/Cu(100) system.

The values of Jinter are directly connected with the
thickness d of the Cu spacer by the well-known Bruno
expression [8], namely

Jinter (d) = 1

d2

{
A1 sin

(
2πd

�1
+ �1

)

+ A2 sin

(
2πd

�2
+ �2

)}
(42)

where �1 = 2.56 ML with �1 = π
2 and �2 = 5.88 ML

with �2 = π while the ratio of the amplitudes, obtained
from measurements, is A1

A2
= 1.3(5). The above dependence

obtained for the system with 3 ML of Ni capped with 3 ML
of Co is presented in figure 5. We can notice the oscillatory
character of interlayer exchange coupling (figure 5(a)) and
consequently the same behaviour of the Curie temperature
(figure 5(b)). For the positive and negative values of the
IEC two magnetic layers are coupled ferromagnetically or
antiferromagnetically, respectively.

The calculations consists in resolving the set of
equations (41) for the free energy of the system (1) described

in the frame of the reaction field approximation modifying the
Valenta model of thin films. They allow us to obtain the values
of the Curie temperature and to compare their behaviour as
well as to present the temperature dependent magnetization
of the ferromagnetic Ni film in different systems. The
experimental data for the Curie temperature are taken from [3]
where the method of their evaluation is given. Starting from
the simplest freestanding Ni film we extend this system by
depositing it on the Cu substrate and then putting on the top
of that system a nonmagnetic Cu film and finally covering it
with a magnetic film of Co. We then analyse the influence of
the Ni/Cu interface and of the IEC between Ni and Co films on
the Curie temperature of the Ni film. The results for different
thicknesses of the Ni film are presented in table 1.

Analysing the data in table 1 for a given Ni film thickness
we can see that the Curie temperature for a freestanding film
is higher than in the case of Ni/Cu and Cu/Ni/Cu systems.
The values of temperature obtained for the single Ni film
and the bilayer system are in a good agreement with the
results reported in [9] where it is shown experimentally
that an uncapped Ni film has a higher temperature than a
film embedded in the Cu/Ni/Cu(100) system. Moreover, a
similar behaviour of transition temperature has been shown
theoretically in [30] for Co film, while for Fe film the inversed
behaviour has been reported. This last case can be easily
described within our approach by using a different interface
exchange integral, namely J interface

Fe > JFe.
This kind of behaviour of the Curie temperature as well

as the decrease of the magnetization caused by the capping
Cu layer is attributed to hybridization between the bonding
d-states of the ferromagnet and the Cu in the interface
layer [9]. The hybridization leads to reduction of the
interacting magnetic moments related to each crystalline lattice
site. Spins connected with magnetic moments, interacting
with their nearest neighbours and with the molecular field,
generate their own reaction field. Therefore, a given spin is
affected by both the molecular field as well as the reaction
field. We can conclude that the interface in the Ni/Cu system
and the additional interface in the Cu/Ni/Cu system modify
the magnetic moments in different ways, which influences the
reaction field and consequently the TC,Ni of the magnetic film.

An interesting temperature behaviour of the magnetization
appears if we put on the top of the bilayer Cu/Ni/Cu system
another kind of magnetic film, like Co film, building a trilayer

7
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Figure 6. Calculated Ni magnetization of a bilayer Ni film (dotted
line) and of Ni film coupled to Co film (solid line) as a function of
temperature. The dashed line refers to the Co magnetization. By
applying Jinter = 0 we identify T ∗

C,Ni.

Co/Cu/Ni/Cu system. Now, we examine and compare the
temperature dependent magnetization for a bilayer composed
of 3 ML of Ni embedded between Cu films—Cu/Ni/Cu(100)—
and for trilayer when 2 ML of Co are deposited on the top of the
above system—Co/Cu/Ni/Cu(100). The magnetization curves
obtained as an average over all Ni and Co layers, respectively
for Ni and Co films, are shown in figure 6. We can notice
two different phase transition temperatures for these different
magnetic films: T ∗

C,Ni = 168 K and TC,Co = 386 K (to estimate
T ∗

C,Ni we fit the magnetization curve mNi when Jinter = 0).
For the whole range of temperatures the magnetization of Ni
film is much smaller than for the Co one, which is caused by
the difference in the values of magnetic moments reported for
these two materials [3]. The third curve shown in figure 6
(dotted line) is calculated for the bilayer system Cu/Ni/Cu
which exhibits a phase transition at TC,Ni = 131 K, lower than
T ∗

C,Ni = 168 K, which is characteristic of the system with 2 ML
of Co deposited on the top. The influence of the capped Co
layers on Ni phase transition temperature means the influence
of the IEC on magnetization and its behaviour in the vicinity of
TC,Ni is clearly seen. These results are in good agreement with
experimental data and with theoretical calculations obtained
from the Green function approach [3]. It is worthwhile noticing
that the change of the critical temperature of Ni film T ∗

C,Ni
in the Co/Cu/Ni/Cu system with respect to its value TC,Ni in
the Cu/Ni/Cu system is always towards higher temperatures
independently of the sign of the IEC, while we observe the
oscillatory character of the shift of phase transition temperature
�TC,Ni = T ∗

C,Ni − TC,Ni (figure 5).
In addition, for a better comparison of these two systems

we analyse the influence of Ni film thickness on its Curie
temperature in the case of the Co/Cu/Ni/Cu(100) system with
3 ML of Co and the Cu/Ni/Cu(100) system. The results are

Figure 7. The thickness dependence of Curie temperature TC,Ni of Ni
film for the following systems: Co/Ni/Cu/Cu(100) with 3 ML of Co,
Cu/Ni/Cu, Ni/Cu and the freestanding Ni film.

gathered in table 1 where we also present the results from MFA
calculations. We can see that the values of Curie temperatures
calculated within MFA are quite different from those obtained
in RFA. In each system an increase of transition temperature
with Ni film thickness is observed. The comparison with
experimental data shows quite good agreement (table 1).
Taking into account the fact that in the case of experimental
data [3] the systems are not perfectly built, as complete
monolayers, we can consider this agreement as excellent.

The Curie temperatures obtained for the Co/Cu/Ni/Cu
system indicate that the Co film causes an increase of the
Curie temperature of the Ni film, which is also reported
in [3, 5, 9, 31, 32]. It is obvious that the reaction field in Ni
layers is now changed due to the presence of another magnetic
material.

The results from table 1 are presented in figure 7. It
is worthwhile noticing that the curves for Cu/Ni/Cu and
Co/Cu/Ni/Cu systems are in good agreement with those
obtained within the microscopic many-body Green function
theory (e.g. [3]).

The shift of Ni Curie temperature with a change of the Ni
film thickness observed in the Co/Cu/Ni/Cu system (see the
last column in table 1) is presented in figure 8 for two values of
Jinter, namely Jinter = 4.97×10−23 J and Jinter = 10.8×10−23 J.
The value of �T C,Ni(dNi) exhibits a maximum for dNi = 4 ML,
which is in agreement with the results reported in [32].

The Valenta model of thin films improved by the
reaction field approach (RFA) allows us, in particular, to
calculate the temperature dependence of magnetization for
each monoatomic layer which builds the trilayer system. We
show in figures 9(a) and (b) the layer-dependent spontaneous
magnetization as a function of temperature determined for two
systems: the first one consists of 3 ML of Ni and 3 ML of
Co, the second one is composed of 5 ML of Ni and 3 ML of

8
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Figure 8. The shift �T C,Ni (K) of Ni Curie temperature as a function
of the Ni film thickness observed in the Co/Cu/Ni/Cu system for
different interlayer couplings Jinter = 4.97 × 10−23 J (�) and
Jinter = 10.8 × 10−23 J (•).

Co while in both cases the Ni film is separated from the Co
film by a Cu spacer stacked along the (100) direction. We can
see that the distribution of magnetization along the direction
perpendicular to the surface has the same character for both
systems. First of all, the magnetization is lower at surfaces of
Ni and Co films than in the middle layers and its distribution
is asymmetric due to different boundary conditions. Moreover,
the difference between the magnetization of the surface and
middle layers is much more pronounced in the case of the
thicker system. On the other hand, the existence of an
exchange coupling integral Jinter causes small tails in the Ni
magnetization curves, which are similar to those observed in
the Curie point region for phase transition in the system under
an external magnetic field.

In figure 10 we present the average magnetization
normalized to mNi(T = 0) as a function of temperature
normalized to TC,Ni (phase transition temperature of Ni in the
Cu/Ni/Cu system) for different Ni film thicknesses. Each curve
shows a tail, but the thicker the Ni film is the weaker the
observed influence of IEC on magnetization and the shorter
the tail in the magnetization curve. The first curve in figure 10
(looking from the left) represents the case of a bilayer system
with 4 ML of Ni placed between Cu films. Unfortunately, quite
a strong influence of IEC on magnetization in the systems with
one and two Ni monolayers causes difficulties in determining
their T ∗

C,Ni.
Our theoretical calculations show the difference between

the magnetic properties of Ni film considered as a freestanding
Ni layer and placed in a single Ni/Cu film, a bilayer Cu/Ni/Cu
and a trilayer Co/Cu/Ni/Cu system. These different properties
reflected by different Curie temperatures can be explained as
being caused by the interface with a nonmagnetic Cu layer
and by the interlayer exchange coupling with a Co magnetic

Figure 9. The layer-dependent spontaneous magnetization as a
function of temperature determined for 3 MLCo/Cu/3 MLNi/Cu(100)
system (a) and for 3 ML Co/Cu/5 ML Ni/Cu(100) system (b).

film. The explanation for such behaviour is related to the
existence of the field in which the spins are embedded in
different environments and to which they react.

5. Final remarks

The Valenta model modified by means of the reaction field
approach seems to be an excellent illustrative example which
shows that the origin of the Valenta model usually related
to the molecular field approximation can be in fact of wider
applicability.

The Valenta model of thin films improved by the reaction
field approximation seems to be a very good approach and
a useful method to calculate some magnetic properties of
different multilayer systems, giving results similar to those
obtained within the Green function theory [3].

It is worthwhile noticing that within the theoretical model
for thin films used here the Curie temperature in the case of
isotropic interactions is tending to zero. This corresponds
to the anisotropy constant Kν = 0 (KNi = 0, KCo = 0,
respectively). In the light of the present approach the stability
of magnetic order in thin films can be considered as resulting

9
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Figure 10. The average magnetization normalized to mNi(T = 0) as
a function of temperature normalized to TC,Ni for different Ni film
thicknesses in the trilayer system with 3 ML of Co. The first curve
from the left represents the case of a bilayer system with 4 ML of Ni
placed between Cu films.

from the anisotropic character of the fluctuating part of the
reaction field. This anisotropy is caused by the shape of
correlation functions which are connected with the geometry
of a sample.

The big influence of Co film on the Curie temperature of
the Ni film in the case of very thin Ni films (1 ML, 2 ML)
can be explained by taking into account the size effect when a
2D system should be considered instead of a 3D system and
the enhanced spin fluctuations have to be introduced. The
IEC between the two ferromagnetic films suppresses these spin
fluctuations and induces a sizeable magnetization in the Ni
film. It can be easily related to the idea of a generated reaction
field discussed here.

The improvement obtained by means of the generalized
Valenta model has a great advantage due to the thermodynamic
structure of the theory. The entropy is then still factorized
while the internal energy is calculated by means of the spin
correlations. This fact confirms the use of the present method
and its priority among others by the interpretation from the
physical point of view. Moreover, in this context the approach
modifying the Valenta model leads to an excellent agreement
between experimental and theoretical results collected for the
Curie temperature.

From the point of view of the physical interpretation we
can see that the molecular field MFA corresponds to the spin
correlation functions for which the short range determined by
the parameter λ is not taken into account (λ = 0). On the
other hand the RFA approach corresponds to the case when
the short range correlations appear (λ �= 0). This correlation
behaviour can also be observed for the model based on the spin
pair entropy [21].

Thus we can see that the entropy factorization leads in
both cases considered to different correlation ranges in the

superficial plane and in the direction perpendicular to the
surface.

The simplest case is for λ �= 0 in the plane which
corresponds to a thermodynamically homogeneous subsystem
and λ = 0 in the direction perpendicular to the surface
which corresponds to interaction between two homogeneous
subsystems. The considered situation describes the interaction
between the homogeneous subsystems by means of the
molecular field terms, which is the main assumption of the
Valenta model based on the Néel sublattice thermodynamics.

The situation discussed in the present paper, λ �= 0 for
all directions, satisfies the Valenta model construction in the
generalized sense when the interaction between monoatomic
layers considered as homogeneous subsystems is still of a
molecular field nature but now in RFA terms.

Appendix. A Green function approach

In [3] the experimental results are explained by means of the
Green function approach which was found to be a suitable
tool for this purpose. The Green function method is of
general character and it is used in many different problems.
In particular, in the case of thin film geometry the method was
introduced by Brodhorb and Haubenreisser [33] and developed
by many authors [34]. It is well known that the formula which
determines the magnetization distribution 〈Sz

ν j 〉 across a film
with layer structure numbered by ν, applied in a variety of
papers, can be written for S = 1

2 as (e.g. [35]):

〈
Sz

ν j

〉
= 1

2
+ 1

π

∫ +∞

−∞

Im
〈〈

S+
ν j |S−

ν j

〉〉

ω

exp (ω/kBT ) − 1
dω (A.1)

where 〈〈S+
ν j |S−

ν′ j ′ 〉〉ω is taken as the Fourier representation of
the Green function defined by:

〈〈
S+

ν j (t) |S−
ν j

(
t ′)〉〉 = −iθ

(
t − t ′) 〈[

S+
ν j (t) , S−

ν j

(
t ′)]〉 (A.2)

in the configuration space ν j and satisfying the equation:

d
〈〈

S+
ν j (t) |S−

ν′ j ′
(
t ′)

〉〉

dt
= −iδ

(
t − t ′) 2

〈
Sz

ν j

〉
δν jν′ j ′

+ θ
(
t − t ′) 〈[[

S+
ν j , H

]
, S−

ν′ j ′

]〉
(A.3)

in which the considered system is described by the
Hamiltonian H .

Let us consider the Hamiltonian H in the form of a
set of magnetic moments represented by the spin operators
embedded into the molecular H m

ν j and external H magnetic
fields. Thus, the Hamiltonian takes the form

H = −gμB

∑

μρ

(
H + H m

μρ

)
Sz

μρ (A.4)

which allows us to find the imaginary parts of the proper Green
functions:

〈〈
S+

μρ

∣∣∣S−
μ′ρ′

〉〉
= 2

〈
Sz

μρ

〉
δρρ′δμμ′

ω − gμB

(
H + H m

μρ

) + iε
(A.5)
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which are of the form

Im
〈〈

S+
μρ

∣∣∣S−
μ′ρ′

〉〉
= −2π

(
� − gμB

(
H + H m

μρ

))

× 〈
Sz

μρ

〉
δρρ′δμμ′ . (A.6)

We can see that only diagonal functions (ρ ′ = ρ,μ′ = μ) are
different from zero. Moreover, the average values of 〈Sz

μρ〉 do
not depend on ρ because of the thermodynamic homogeneity
of the layers treated as homogeneous subsystems, i.e.

〈
Sz

μρ

〉 = 〈
Sz

μ

〉
(A.7)

and consequently

H m
μρ = H m

μ .

Taking into account the relation (A.6) for condition (A.7) we
obtain the formula (A.1) in the form

〈
Sz

ν

〉 = 1

2
− 2

〈
Sz

ν

〉 ∫ +∞

−∞

δ
(
� − gμB

(
H + H m

ν

))

e�/kB T − 1
dω (A.8)

hence

〈
Sz

ν

〉 = 1

2
th

[
gμB

(
H + H m

ν

)

2kBT

]
(A.9)

which corresponds exactly to the solution within the Valenta
model for

gμB H m
ν = J

∑

ν′∈ν

z
(
ν, ν ′) 〈

Sz
ν′
〉
. (A.10)

Thus, the problems are equivalent with respect to the final
result for 〈Sz

ν〉 when we assume the Ising model and the random
phase approximation (RPA) decoupling for the proper Green
functions.

Let us consider the Hamiltonian in the case of the
molecular field given by (A.4) but for the H m

μρ given by the
RFA calculations (6). Then the Green function approach
allows us to obtain the average value of spin component z,
i.e. 〈Sz

ν 〉, given by (A.9) where H m
ν takes now its value (6) with

λ given by (22) where s and G(s) are given by (20) and (21),
respectively.

We can see that the equivalence between the results of the
Valenta model and the Green function approach in the random
phase approximation for the Ising model is evident in their
property of general character. The extension of the Valenta
model applied in the present paper by the introduction of the
reaction field correction corresponds to the situation in which
the spin correlations are taken into account. Although this idea
is common for considerations within the Valenta model and the
Green function approach, as far as the physical interpretation
goes the results are now not identical due to the different
descriptions of the magnetization profiles.

The particular results considered in the present paper
provide an illustrative example whose generalization seems to
us to have a general meaning for the discussion of methods and
their comparison at different levels of accuracy.
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